Infinite Limits and Asymptotes

-We now need to look at limits as they travel without bound.
-The first classic example is $f(x)=\frac{1}{x}$

-We want to consider $\lim _{x \rightarrow 0} \frac{1}{x}$
-We can't simply substitute to find the limit.
-Since limits are analytic we need to look at what happens as $x \rightarrow 0$

$$
\frac{1}{1}=1 \quad \frac{1}{.5}=2 \quad \frac{1}{.25}=4 \quad \frac{1}{.125}=8
$$

-As the denominator gets closer to zero we see that the value gets larger.
-If we would use a negative value we would see the values get increasingly negative.
-Because of this we know that the two-sided limit of $f(x)=\frac{1}{x}$ is undefined.

$$
\text { -But } \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \text { and } \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

-This means that the function either increases or decreases without bound as $x \rightarrow 0$ from either side.
-Looking at the graph and knowing the limits go to positive and negative infinity tell us there is a vertical asymptote.

Checking for Vertical Asymptotes

$$
\text { If } \lim _{x \rightarrow c} f(x)= \pm \infty \text { then } x=c \text { is a vertical asymptote. }
$$

-The other type of limit involving infinity is when the limits are evaluated as $x \rightarrow \pm \infty$.
-We can again use the model $f(x)=\frac{1}{x}$. In order to now consider the limits $\lim _{x \rightarrow \pm \infty} \frac{1}{x}$ we can't simply substitute in infinity.
-To solve we need to start thinking analytically.

$$
\frac{1}{10}, \frac{1}{100}, \frac{1}{1,000}, \cdots, \frac{1}{1,000,000}
$$

-If we consider that the values in the denominator will continue to get larger and larger what value does this approach?
-This works for the function $f(x)=\frac{1}{x}$ but what about other functions?
-Consider the polynomial function

$$
f(x)=x^{3}+2 x+3
$$

-Does adding 3 really matter when $x=1000$?
-If $x=1000$ then:

$$
\begin{aligned}
& x^{3}=1,000,000,000 \\
& 2 x=2000
\end{aligned}
$$

-So does adding $2 x$ matter?
NO
-This means that $g(x)=x^{3}$ is an end behavior model for $f(x)$.

End Behavior Models

-Model the behavior of a function as \times approaches infinity or negative infinity.
-For large values of $x, g(x)$ will model the behavior of $f(x)$ for large values of x.
-A function g is:
a right end behavior model for f iff $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$
a left end behavior model for f iff $\lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}=1$

Check for End Behavior Model

-To check to see if a function is an end behavior model use the definition!

$$
f(x)=3 x^{3}-5 x+9
$$

- Pick $g(x)=3 x^{3}$
'The most powerful term.
-Then test the left and the right
Right

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{3 x^{3}-5 x+9}{3 x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{3 x^{3}}{3 x^{3}}-\frac{5 x}{3 x^{3}}+\frac{9}{3 x^{3}} \\
& =\lim _{x \rightarrow \infty} 1-\frac{5}{3 x^{2}}+\frac{3}{x^{3}} \\
& =1 \quad \quad \text { Passes }
\end{aligned}
$$

Right

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}=\frac{3 x^{3}-5 x+9}{3 x^{3}}
$$

-FOLLOWS SUIT

$$
=1 \quad \text { 'Passes }
$$

-Since the left and right both equal $1 g(x)$ is an end behavior model.

Using End Behavior Models to Evaluate Limits to Infinity

Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{3}-5 x+9}{5 x^{3}+2 x^{2}-7}$
-Choose a term that is the most powerful in both the numerator and denominator.

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{3 x^{3}-5 x+9}{5 x^{3}+2 x^{2} \not-7} \\
& =\lim _{x \rightarrow \infty} \frac{3 x^{3}}{5 x^{3}} \\
& =\frac{3}{5}
\end{aligned}
$$

Using EBM's

Evaluate $\lim _{x \rightarrow \infty} \frac{2 x^{5}+x^{4}-x^{2}+1}{3 x^{2}-5 x+7}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{2 x^{5}}{3 x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{3} x^{3}=\infty
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow \infty} \frac{2 x^{3}-x^{2}+x-1}{5 x^{3}+x^{2}+x-5}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{2 x^{3}}{5 x^{3}} \\
& =\frac{2}{5}
\end{aligned}
$$

Checking for Horizontal Asymptotes

-If $\lim _{x \rightarrow+\infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$ then the line $y=L$ is a horizontal asymptote of the graph of f.

Example

Find any horizontal asymptotes of $f(x)=\frac{9 x^{5}+50 x^{2}+800}{x^{5}-1000}$

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty}=\frac{9 x^{5}+50 x^{2}+800}{x^{5}-1000} \\
& \lim _{x \rightarrow+\infty}=\frac{9 x^{6}}{x^{6}}=9
\end{aligned}
$$

-Therefore there is a horizontal asymptote at $y=9$. You can graph to confirm.

Example of a Vertical Asymptote

Find any vertical asymptotes of $f(x)=\frac{x^{2}-3 x+4}{x+2}$

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}}=\frac{x^{2}-3 x+4}{x+2} \\
& =\frac{(-2.1)^{2}-3(-2.1)+4}{(-2.1)+2}=-147.1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(-2.01)^{2}-3(-2.01)+4}{(-2.01)+2}=-1407.01 \\
& \lim _{x \rightarrow-2^{-}}=\frac{x^{2}-3 x+4}{x+2}=-\infty
\end{aligned}
$$

-Therefore $x=-2$ is a vertical asymptote.

Example

Evaluate $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$

$$
=\lim _{x \rightarrow \infty} \frac{\text { between }-1 \text { and } 1}{\text { really really big }}=0
$$

Example

Find any asymptotes and describe the behavior of $f(x)=\frac{x^{2}-1}{2 x+4}$:

$$
\begin{aligned}
& =\lim _{x \rightarrow-2} \frac{x^{2}-1}{2 x+4} \\
& =\lim _{x \rightarrow-2^{-}} \frac{x^{2}-1}{2 x+4}=\frac{(-2.001)^{2}-1}{2(-2.001)+4}=\frac{+}{-}=-\infty \\
& =\lim _{x \rightarrow-2+} \frac{x^{2}-1}{2 x+4}=\frac{(-1.999)^{2}-1}{2(-1.999)+4}=\frac{+}{+}=+\infty
\end{aligned}
$$

